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Abstract

This paper introduces an original, non-destructive diagnosis tool using modal data only. Our objective is twofold: to

identify damage in structural elements (beams) and to establish a classification of the connections between elements using

no a priori information except the modal data. This paper introduces enhanced wavelet analysis as a tool for damage

detection based on mode shape data, using an analytical mode shape fit as the undamaged state. Then we demonstrate that

damage severity can be identified using a supervised neural networks approach. To supplement the local diagnosis,

boundary conditions are characterised using spatial frequency. Finally, a damaged beam of a wooden portal is analysed

using a high-resolution mode shape acquired with a laser Doppler vibrometer. The experimental results confirm the

accuracy of the method for detecting damages and classifying boundary conditions.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Over the past 20 years, detecting damage in a structure from the changes in its dynamic parameters has
received considerable attention from aerospace, mechanical and civil engineering communities. Several
approaches of structural health monitoring (SHM) based on vibration techniques have demonstrated their
capabilities of detecting defects in structures [1]. The basis of these damage detection methods is that
modifications in the properties of a structure will alter its dynamic characteristics. A first approach consists in
using modal analysis to measure the natural frequencies of a structure, which can provide useful indications as
to the existence of damage zones. However, this simple and fast method has some limitations in locating and
quantifying damage zones [2]. To overcome these difficulties, many researchers [3,4,16] have focused on
characterising the structural mode shapes, which contain spatial information and appear to be more sensitive
to the presence of damage zones than natural frequencies. In this approach accuracy of damage detection
depends on the quality of both experimental measurements and signal processing. Particularly, the quality of
an approach of SHM using experimental mode shape analysis (especially for small damages detection) is
always dependent on the reliability and accuracy of sensors and also on the experimental sampling [8]. For this
ee front matter r 2006 Elsevier Ltd. All rights reserved.

v.2006.03.044

ing author. Tel.: +33557122820; fax: +33556680713.

ess: jmorlier@lrbb.u-bordeaux.fr (J. Morlier).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2006.03.044
mailto:jmorlier@lrbb.u-bordeaux.fr


ARTICLE IN PRESS
J. Morlier et al. / Journal of Sound and Vibration 297 (2006) 420–431 421
reason, original studies have been developed using a laser Doppler vibrometer (LDV) [5] or video analysis
[6,7]. Otherwise signal processing tools have recently been introduced such as continuous wavelet transform
(CWT) [9] in order to detect and identify damage using mode shape data [3,4,10–12].

In order to obtain a complete diagnosis of a structure, boundary conditions (BCs) must also be analysed.
This work has been recently introduced, from a theoretical point, of view by Olgac and Jalili [13] which have
developed a general analytical formula to identify the BCs on a flexible beam. Practically Pai et al. [14] have
successfully identified the boundary effects in beams using spectral element analysis and LDV mode shape
data.

The main objective of this paper is to present a complete approach of structural diagnosis, carried out on a
simple structure such as a wooden portal frame, and based on the analysis of the local dynamic behaviour of
each constitutive element of the structure. The first chapter introduces the link between the structural dynamic
behaviour of beams and signal processing of mode shape in order to produce damage identification. Then we
present an advanced method which uses the CWT to compute the wavelet singularity map (WSM) for locating
singularities on mode shape data. Numerical models are used to validate the method and also to build a large
simulated database in order to identify real damage by means of a neural network classification. One of the
advantages of this method is that it does not require any a priori information and also it informs about two
types of damage assessment: structural and joint. Moreover the extracted features (damage location and
extent, BCs class) could be used, for example, to build a posteriori a finite element model, making possible an
adapted monitoring of the structure. As an application our method has been validated on a wooden portal
frame using a scanning LDV apparatus.
2. Theoretical background

2.1. Damaged beam dynamic behaviour

Classically, the equation used to represent a uniform (undamaged) beam under free vibration can be written
as follows:

rS
q2

qt2
vðx; tÞ þ EI

q4

qx4
vðx; tÞ ¼ 0, (1)

where x is the longitudinal coordinate, v is a transversal displacement of the beam in y direction (which is
perpendicular to x), t is time, E is the Young’s modulus, S is the cross-section area, I is the planar moment of
inertia of the cross section, L is the length and r is the density of the beam.

Assuming that bending stiffness is independent of time and that the steady-state vibration has a harmonic
form, we get:

d4Y ðxÞ

dx4
� l4Y ðxÞ ¼ 0. (2)

Using separated variables and solving the differential equation, we can express the mode shape as

Y iðxÞ ¼ A1i coshðlixÞ þ A2i sinhðlixÞ þ A3i cosðlixÞ þ A4i sinðlixÞ, (3)

where the spatial frequency of the ith mode is defined as l2i ¼ oi

ffiffiffiffiffiffiffiffiffiffiffiffi
m=EI

p
with i ¼ 1yn.

The mode shape describes the structure’s motion when it is vibrating at a particular frequency.
For a rectangular beam, a simple way to simulate a damage zone consists in introducing a local variation of

bending rigidity EI. According to the notation of Fig. 1, for a homogeneous given material a crack zone is
defined for an element of width w by the depth ratio c/h. Thus, the inertia reduction factor dI is defined as

dI ¼ ~I
�

I with I ¼ ðbh3
Þ
�
12 and ~I ¼ ðbc3Þ

�
12. (4)

This definition of a damage zone is easily transposable for both simulations and experiments. In these
conditions the dynamic response of a beam depends both on depth and position of the crack and on BCs.
Olgac [13] has examined the case of an undamaged beam with parametric BCs as depicted in Fig. 1. The
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Fig. 1. Simulated damaged beam with elastic spring supports to simulate non-perfect boundary conditions: dimensions and notations.
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partially fixed–fixed beam problem has been already studied [15] and our previous work [10] highlighted
spatial frequency as a tool to exhibit connection behaviour (perfect or semi-rigid).

2.2. Wavelet transform as a tool for identifying singularities

The principle of SHM using modal data is based on local analysis of regularity of mode shapes. To reach
this goal the signal should be analysed by functions which are localised in both time and frequency in order to
represent the frequency behaviour of a signal locally in time. A performing tool classically used for this kind of
problem is wavelet transform.

The wavelet is an oscillary function c 2 L2ðRÞ having a zero average and a finite length (compact support).
The real or complex-value function c(x) is used to generate a family of wavelets cu;sðxÞ, defined as

cu;sðxÞ ¼
1ffiffi
s
p c

x� u

s

� �
, (5)

where real numbers s and u denote the scale and translation parameters, respectively.
For a spatial one-dimensional signal f(x) the wavelet transform can be obtained by integrating the product

of the signal function and the complex conjugate c�ðxÞ of the wavelet function.
Considering the mode shape of the beam as a one-dimensional signal f(x), where the variable x is space, the

CWT can be defined as

Wf ðu; sÞ ¼

Z þ1
�1

f ðxÞ
1ffiffi
s
p c�

x� u

s

� �
dx. (6)

If the signal contains a spectral component corresponding to the current value of s, the product of the wavelet
with the signal gives a relatively large value of the wavelet coefficient Wf ðu; sÞ at the location u where this
spectral component exists.

This scalogram is a joint time-scale representation of a one-dimensional signal. This means that the spectral
information of the signal is described at all observation scales and at all times. As the scales are related to the
frequency of the wavelet, the scalogram provides coarse features of the signal f(x) for large wavelets (high
scales, low frequencies) and finer details of the signal for small wavelets (fine scales).

An important characteristic of a wavelet is its number of vanishing moments n, which are used to analyse
the local regularity of a signal: Z þ1

�1

tkcðxÞ dx ¼ 0 for 0pkpn. (7)

For example, a wavelet with only one vanishing moment is orthogonal to a linear function and can be used to
measure the regularity of the function between 0 and 1. A high n number increases the quality of the analysis



ARTICLE IN PRESS
J. Morlier et al. / Journal of Sound and Vibration 297 (2006) 420–431 423
but also increases the number of computations as the support length of the wavelet increases (2n�1). Mallat
and Hwang [9] showed that the maxima of the modulus of the CWT were related to isolated singularities of the
signal. A practical way to characterise the singularity is to build a logarithmic representation of the amplitude
of the maxima line versus scales. The mathematical formulation of this representation is given by Eq. (8),
which introduces the Lipschitz exponent a. When the wavelet is the nth derivative of a gaussian, the maxima
curves are connected and go through all of the finer scales. The decay rate of the maxima along the curves
indicates the order of the isolated singularities [9].

log2ð Wf ðu; sÞ
�� ��Þplog2ðAÞ þ ðaþ

1
2
Þlog2ðsÞ. (8)

More precisely, the Lipschitz exponent gives information about the differentiability of the function. The
Lipschitz exponent is defined by: n� 1oaon (where n is the number of vanishing moments) and its value is
inversely proportional to the size of the singularity. For example, if the value of exponent a is 1.5 at x ¼ x0, we
know that this function is differentiable only once.

Another parameter, related to the relative magnitude of each singularity, can be extracted from Eq. (8): the
intensity factor A.

2.3. Damage identification on displacement mode shape

The damage identification problem consists in locating and quantifying damaged zone(s). Wavelet
transform offers the possibility to achieve these two levels of diagnosis as mode shapes contain local
information about the local rigidity which is related to damage localisation and severity. Previous works [11]
demonstrate the robustness of this method and the ability to distinguish damage from noise.

Following Hong et al. [3], we chose to study the first bending mode shape Y 1ðxÞ, which can be decomposed
in a smooth function Y 1 smoothðxÞ and a singularity function Y 1 SingularðxÞ as follows:

Y 1ðxÞ ¼ Y 1 smoothðxÞ þ Y 1 SingularðxÞ. (9)

This last relation can be extended to any mode shapes. Generally, lowest frequency mode shapes are reliable.
It leads to characterise the singularity function by

Y 1 SingularðxÞ
�� ��pK x� xVj ja, (10)

where K is the amplitude factor, xv is the singularity location and a is the Lipschitz exponent. In practice
Y 1 smoothðxÞ is obtained from experimental data Y1(x) by fitting the analytical equation Eq. (4) using a
nonlinear least-squares method. Then the function Y 1 smoothðxÞ constitutes a baseline mode shape useful in the
particular case of SHM approach based on no a priori information.

The Lipschitz exponent introduced above represents one of the principal parameters used to estimate the
severity of a damage zone. Hong et al. [3] also conclude that to extract the Lipschitz exponent in the damaged
beam problem using the wavelet transform the minimum number of the vanishing moments is n ¼ 2. Based on
these observations, Hong et al. [3] propose the mexican hat as a mother wavelet (corresponding to the second
derivative of a Gaussian, n ¼ 2) for detecting singularity on mode shape. For very small scales (1–4), the
estimation of Lipschitz exponent is reliable and its value is included between 1oao2 [12]. Douka et al [4]
defined the intensity factor A which is easier to estimate than the Lipschitz exponent a and investigated the
relation between wavelet transform coefficients and crack extent, described in terms of the intensity factor.

The local behaviour of these two severity indicators A and a has been studied form a parametric study. This
numerical modal analysis is carried out by a finite element analysis software developed on Matlab using
Euler–Bernouilli beam theory. Damage severity should vary from dI ¼ 0:1 (large damage) to dI ¼ 0:9 (small
damage). The damage location should vary along the beam length for two BCs: clamped–clamped (CC) and
clamped–free (CF). Damage size is constant (two-node beam element) for a sufficient number of elements to
obtain good results (N ¼ 80). The material data are E ¼ 206GPa, r ¼ 7850 kg=m3, and beam geometry is
defined by b ¼ 0:032m, h ¼ 0:016m, L ¼ 0:72m.

Fig. 2. represents the behaviour of the 2 damage severity indicators for several damage location LD/L for the
clamped–clamped BCs. At each location, the Lipchitz exponent is inversly proportional to the damage
severity. Fig. 2a. shows that a depends on the location of the damage zone LD/L and so on the local curvature
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Fig. 2. Damage indicators behaviour (first bending mode) of the simulated beam for various locations LD/L and variable severity dI:

BCs ¼ CC, Lipschitz exponent a (a) and intensity factor log2 (A) (b). Damage simulated by inertia reduction: ~ dI ¼ 0:1; ’ dI ¼ 0:3; m

dI ¼ 0:5; �dI ¼ 0:7; o dI ¼ 0:9.
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of mode shape. Fig. 2b. exhibits also the impact of the curvature on the intensity factor A as expected from
Refs. [3,4,10,11]. Finally it appears that the intensity of the parameters A and a is effectively correlated to the
severity of the damage zone but their intensity depend also on the localisation of the damage zone and the BCs
applied at beam ends.

3. Advanced damage identification method

Our advanced damage detection method (described in Fig. 3) can be divided into four successive steps:
�
 Acquisition: Modal parameters are obtained using an optimal sampling based on Sazonov and
Klinkhachorn works [8]. This approach allows us to estimate high resolution mode shapes taking into
account experimental noise and enables to evaluate even small damages. A pre-processing step consists in
the exploitation of experimental mode shapes Yi in order to obtain an estimation of mode shapes related to
an undamaged state of the structure. This baseline state Yismooth is produced using a fit between
experimental values and the theoretical relation described in Eq. (3), according to classical hypothesis of
material homogeneity and linear behaviour of structure.

�
 Processing: The processing step is based on the exploitation of mode shapes by CWT. Considering for

example the first mode shape Y1, the damaged zone can be located on the WSM by applying wavelet
transform to Eqs. (9) and (10):

W Y 1Singular
ðu; sÞ ¼ W Y 1

ðu; sÞ �W Y 1smooth
ðu; sÞ

�� ��. (11)

This equation is in good agreement with the theory, as Y1smooth (x) is a regular function; it means
W Y 1smooth

ðu; sÞ is closed to zero at the singularity location. A Tuckey windowing function is applied to the
mode shape in order to limit the boundary effects of the CWT computing. One of the advantages of this
method is to limit noise effect on singularity detection.

�
 Localisation: Maxima lines are extracted from wavelet singular map and permit to estimate several

significant indicators about the damage severity on both W Y 1
ðu; sÞ and WSM. Our estimation of Lipschitz

exponent is slightly different from classical threshold methods which study the signal on scales (1:32) [3,4].
The advantage of WSM is to avoid threshold problems or nonlinearities of the maxima line along the scale
range.

�
 Identification: The first step of the identification procedure is to estimate for each damage zone the Lipschitz

exponent a and the intensity factor A directly on experimental data W Y 1
ðu; sÞ using the maxima lines

obtained from WSM. Considering that a and A are only relative severity indicators our problem of
identification is typically a pattern recognition problem which is often solved using a feed forward neural
network with supervised learning. In order to improve the generalisation ability of neural network
procedure we have introduced another severity indicator defined by SR ¼ aM=AM

�� �� (the absolute value of
the ratio of Lipschitz exponent to intensity factor, obtained from the WSM). This indicator which is
uncorrelated to a and A (due to the windowing and thresholding function applied on the WSM) vary
slightly with damage location. The relevance of the damage indicator SR ¼ aM=AM

�� �� has been numerically
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studied on the same beam used in Section 2.3 for two BCs, considering several locations and severities of
the damage zone. In Fig. 4 the black line represents the overall trend of SR as a function of severity. For
each location, SR is a decreasing function of dI; this means that the overall trend is a linear relationship
with damage severity (for both BCs). It also illustrates that SR offers a range of variation which is less
dependant on the damage location than a and A.

The neural network presented in Fig. 5 is trained to associate outputs with input patterns and then
approximate any linear (or nonlinear) relationship between inputs and outputs. Practically, six input
parameters are used: a global indicator of rigidity l1L, two mode shape curvature indicators Y

0

1ðx ¼ LDÞ
�� �� and



ARTICLE IN PRESS

�1L

⏐Y (LD)⏐

LD / L

�

⏐�M / AM⏐

�

INPUT LAYER
HIDDEN OUTPUT

dI

BACK PROPAGATION ERROR

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
-6 -4 -2 0 2 4 6

P (t) =
1

1 + e-t'

LAYER LAYER

Fig. 5. Principle of the feed forward multilayer perceptron with sigmoid activation functions used to identify damage extent from the

package of six extracted indicators.

0
0

dI

0

1

0 1

dI

d
I ID

d
I ID

1.2

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 0.2 0.4

0.3

0.4

0.5

0.6

0.2

0.1

R2 = 0.7431

y = 0.636x + 0.1491

LD/L increases 

y = 0.7818x + 0.1646

R2 = 0.9129

LD/L increases 

(a) (b)

Fig. 6. Correlation between identified damage severity dIID and simulated damage extent dI: each point � associated with constant

parameter dI is a function of damage location LD/L, which increases from top point to bottom point for BCs ¼ CC (a) and CF (b).

J. Morlier et al. / Journal of Sound and Vibration 297 (2006) 420–431426
LD=L (where LD is the damage location and L is the beam length), and three severity indicators a, A and
SR ¼ aM=AM

�� ��. This combination of six independant descriptors set is obtained by multiple tests on simulated
data. More precisely, the recognition tool is designed with a multilayer perceptron (MLP) with two-layer feed
forward and a hidden layer with six sigmoid functions, well adapted to recognition problems. A wide range of
different damaged beams is computed (240 examples with different sizes of beam and different damage
locations and severities) in order to set up an efficient training database. After learning using a Bayesian
regularisation algorithm, the neural networks ouptut characterises the damaged zone by an identified inertia
reduction factor dI ID that corresponds to the experimental set of indicators (unlearned).

Finally we show in Fig. 6 some interesting numerical results with the NN classification: there is a good
overall correlation (for all damage locations) between real damage extent dI and identified value dIID, with a
correlation coefficient R240:91 for CC and R240:74 for CF. This phenomenon also enhances the curvature
impact on the damage characterisation and the importance of finding the appropriate mode shape to analyse
(in a complex structure). The correlation coefficient for cantilever beams is small, because damage is much
more difficult to extract and because there are few CF simulations in the database.
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4. Experimental results

The experimental setup consists in a Polytec PSV 400 scanning vibrometer for sensing and a shaker for
excitation. In order to obtain experimental operating deflection shapes (ODS), we performed an acquisition to
estimate the frequency response functions (FRFs) for all measurement points. The ODS were then calculated
using an isolated frequency from the averaged FRF. At a given resonant frequency, if the ODS is dominated
by one mode, then the ODS will closely approximate the mode shape, as the excitation force is not applied at a
nodal line and the excitation sweeps around the resonance peak frequency.

In order to validate our numerical results, we conducted an experiment (Fig. 7b) on a timber portal frame.
All the wood beams have the same section, b� h ¼ 80� 80 mm2, and are 920mm long. From all our data we
extracted an interesting bending mode shape (the third portal frame resonance frequency at 264Hz), as it
clearly exhibits a large amplitude and a typical first bending mode shape for a beam with non perfect BCs. In
fact, using structural dynamic response to locate small defects requires the use of high frequency deflection
shapes with high curvature [14]. We focused on the double-damaged part of the portal (saw cuts in red
in Fig. 7a). The first damage was inflicted at LD1 ¼ 487mm from the column base, with a depth of 13mm and
a width of 1.5mm (h ¼ 67mm i.e. crack of 41% equivalent to dI ¼ 0:59). The second damage (perpendicular
to the first), 16mm deep by 1.5mm wide, was inflicted at LD2 ¼ 237mm from the clamped end (b ¼ 64mm i.e.
crack of 20% equivalent to dI ¼ 0:8).
�

LD
d

(a)

Fig

wit
Acquisition and processing: The animated ODS was acquired using a 4� 65 points map (Fig. 8) using
optimal sampling resolution of 66 points/m following Sazonov’s formulas [8] with L ¼ 0:9m (beam length)
and e ¼ 0:1% (noise standard deviation from LDV). Then we extracted from the two-dimensional surface
mode shape data the most probable mode shape, interpolated and averaged with the entire surface map,
resulting in a vector of 260 points. This signal represents the medium line (overall) behaviour of the beam.
The data are then fitted to analytical mode shape in Fig. 9:

yfit ¼ 0:255 cosh ð3:719xÞ � 0:255 sinh ð3:719xÞ � 0:175 cos ð3:719xÞ þ 0:869 sin ð3:719xÞ:

The first crack damage which belongs to the high-curvature part of the mode shape can be directly detected
in Fig. 9. However, the second crack has much less effect as its variation of inertia is lower and as it lies
within a low-curvature part of the signal. The WSM is then calculated (Fig. 10); it highlights three damaged
zones and the heterogeneity of the material (small maxima lines around LD2) as LDV noise standard
deviation is classically low (close to 10�3).
Beam length Lh=1.5m, section S= 0.08*0.08m2

2=0.237m 
I= 0.83

LD1= 0.487m 
dI= 0.59

Lv=0.92m 
S=0.08*0.08m2 

Surface 
scanned
by LDV

Wood-Steel Joint 

Excitation

(b)

. 7. Front view of the left-hand column under study with two damages at LD1 and LD2 (a) and schematic drawing of the portal frame

h four wood-and-steel joints (b).
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�
 Localisation and interpretation: Fig. 10 leads to distinguish three singular parts. The first one corresponds
to the damage zone located around L ¼ 0.2m. It represents a complex damage zone: the damage
is well located and stands out clearly from noise (and heterogeneity) however some of its properties
(maxima line slope) are very close to noise. Moreover, with a timber complex structure the problem
of distinguishing damage from noise and the heterogeneity of the material remains. For this
damage zone some parameters extracted from WSM are not included in the database range of our
neural network. The step of identification cannot be realised for this damage zone. The second part
represents the damage zone located at LD1 ¼ 0.487m. It clearly exhibits a strong maxima line in a
high-curvature part of the mode shape. This damage zone will be analysed further. The third singular part
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Table 1

Mode shape parameters and extracted indicators using the wavelet singularity map used to identify the damage severity for the damage at

LD1

Damaged mode shape parameters Extracted indicators using WSM

l1L ¼ 3:4215 a ¼ 1:36

Y 0 ¼ ðx ¼ LD2Þ
�� �� ¼ 0:29 log2(A) ¼ �7.61

LD=L ¼ 0:5311 SR ¼ 0:2
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Fig. 11. Damage identification at LD1 (T are the NN targets and A the NN outputs) using optimal reduced database: severity dI ¼ 0:58
identified at dIID ¼ 0:616 with R2 ¼ 0:996 (R ¼ 0:998). o Data points; –––– best linear fit: A ¼ (1.01) T+(0.0148); – – – – A ¼ T.
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is correlated to the dissymmetry of mode shape representation (Fig. 9) observed on the extremities of the
beam. The corresponding maxima line on WSM can be then interpreted as a high rigidity of the beam-to-
column joint.

�
 Identification: The maxima line at LD1 is then extracted using our algorithm. It informs us about pertinent

indicators (Table 1) which constituted the six inputs parameters of our damage extent recognition neural
networks. Using these results we can identify dI ID ¼ 0:616 at LD1 with good confidence (R2 ¼ 0:996) in
Fig. 11. Here we use a randomly chosen reduced database, generally more precise than the classical
approach [10]. This robustness is explained if the extracted data are due to the same type of damage and
beam dimensions. Its major drawback is the time it takes to converge to the optimal reduced database. For
the BCs classification, the result p � l1 L ¼ 3:4215 � 4:73 indicates that the BCs are non-perfect; it
represents the strong rigidity induced by the mortise-and-tenon joint (plus transverse steel rods) for the
beam-to-column connection compared to the clamped base.

5. Conclusions

Our method is designed to establish the relation between pertinent damage indicators and damage severity
using numerical examples. Wavelet transform can be used to locate the damage, while supervised neural
networks are able to identify real damage using a simulated database. As an application we focused on a
damaged part of a wooden portal frame. Using no a priori information, we succeeded in validating our
method, locating structural damage very efficiently and identifying damage located on the high-curvature part
of the mode shape. Further research should focus on a fuzzy expert system to automate the detection
procedure in terms of its ability to properly distinguish damage from noise and heterogeneity. We also intend
to qualify damage not only in term of inertia reduction but aslo in term of criticitity (probability of detection,
false alarm). Finally the extracted features (including BCs characterisation) could be used to update a finite
element model in order to validate an enhanced model update approach.

Acknowledgements

Particular thanks to Polytec France and especially J.-M. Laurent and for their active collaboration in data
acquisition by scanning laser vibrometer.
References

[1] S.W. Doebling, C.R. Farrar, M.B. Prime, D.W. Shevitz, Damage identification and health monitoring of structural and mechanical

systems from changes in their vibration characteristics: a literature review, Los Alamos National Laboratory Report LA—13070—MS.

[2] R.D. Adams, P. Cawley, The localisation of defects in structures from measurements of natural frequencies, Journal of Strain Analysis

14 (1979) 49–57.

[3] J.C. Hong, Y.Y. Kim, H.C. Lee, Y.W. Lee, Damage detection using the Lipschitz exponent estimated by the wavelet transform:

applications to vibration modes of a beam, International Journal of Solids and Structures 39 (2002) 1803–1816.

[4] E. Douka, S. Loutridis, A. Trochidis, Crack identification in beams using wavelet analysis, International Journal of Solids and

Structures 40 (2003) 3557–3569.

[5] A.B. Stanbridge, D.J. Ewins, Using a continuously scanning laser doppler vibrometer for modal testing, Proceedings IMAC XIV,

1996, pp. 816–822.

[6] S. Patsias, W.J. Staszewski, Damage detection using optical measurements and wavelets, Vol. 1, SHM, Sage Publications, Beverley

Hills, CA, 2002 pp. 5–22.

[7] U.P. Poudel, G. Fu, J. Ye, Structural damage detection using digital video imaging technique and wavelet transformation, Journal of

Sound and Vibration 286 (2005) 869–895.

[8] E. Sazonov, P. Klinkhachorn, Optimal spatial sampling interval for damage detection by curvature or strain energy mode shapes,

Journal of Sound and Vibration 285 (2005) 783–801.

[9] S. Mallat, W.L. Hwang, Singularity detection and processing with wavelets, IEEE Transactions on Information Theory 38 (1992)

617–643.

[10] J. Morlier, F. Bos, P. Castera, Structural health monitoring of timber structure using advanced vibration analysis, Proceedings of fifth

International Conference on Acoustical and Vibratory Surveillance Methods and Diagnostic Techniques, Senlis, France, October (2004).



ARTICLE IN PRESS
J. Morlier et al. / Journal of Sound and Vibration 297 (2006) 420–431 431
[11] J. Morlier, F. Bos, P. Castera, Benchmark of damage localisation Algorithms using mode shape data, Key Engineering Materials,

293–294 (2005), pp. 305–312.
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